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' Xilinx Research - Ireland vo Bolsens

CTO

> Part of the worldwide CTO organization (9 out of 36)

> Including Xilinx University Program (Cathal, Katie)
‘.‘ IDA Ireland Kees Vissers

> Al Lab expansion part-financed through Fellow

> Mission: Application driven technology development
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'Plus a Very Active Internship Program
®NTNU

> On average 4-6 interns at any given time Norwegian University of
. e Science and Technology

>> From top universities all over the world
>> \We are always looking for talent ;-)

Karlsruher Instltut fur Technologle

=
I m  [ECHNISCHE UNIVERSITAT,
m KAISERSLAUTERN

POLITECNICO| = &P
> Qverall MILANO 1863 O E",.’ Ziirich
>> 70+ Iinterns since 2007

TECHNISCHE % THE UNIVERSITY OF |
>> Many collaborations have come from this @ DREERaITAT N9NEAd| Imperial College
*

>> Many found employment London




Industry Context

—— . —

e : HERE COMES A AND HERE COMES, AN THIS QUGHT
HERE COMES THE SPORTS CEMENT TRUCK! INFLAMMARRLE CHEMICAL
CAR AT 200 MLES '

FER BWOUR !

“Trends meeting Technological Reality”
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' Mega-Trend:

The Rise of the Machine (Learning Algorithm)
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> Potential to solve the unsolved problems

> Making solar energy economical, reverse engineering the brain
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(Jeff Dean, Google Brain 2017)
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'What’s the Challenge?

Example: Convolutional Neural Networks
Forward Pass (Inference)

Input Image Neural Network Neural Network

S S S S S
0 1 2 4 5 6
V. A2 V. \ v Vv
llllll Layer Layer Layer Layer Layer Layer Layer Outputs C at ?
LO L1 L2 L3 L4 L5 L6

feature extraction classification

For ResNet50:
70 Layers
7.7 Billion operations
25.5 millions of weight

Basic arithmetic, incredible parallel but Huge Compute and Memory Requirements
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'Compute and Memory for Inference

*architecture independent
**1 image forward
*** batch =1
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' Mega-Trend:

Explosion of Data

HERE COMES A
CEMENT TRUCK!

> Astronomically growing amounts of data
>> More sensors
>> More users
>> More use cases: Genomics (DNA) “Genomical”

Data Acquisition in 2025
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0 - 0.1 | 2] Stephens, Zachary D., et al.
Astronomy Twitter YouTube Genomics "Big data: astronomical or genomical?."

=10 XILINX INTERNAL ¢ XILINX



'Technology:

End of Moore’s Law & Dennard Scaling

AND HERE COMES AN
IRFLAMMARLE  CHEMICAL

%o.'!
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Economics become questionable Power dissipation becomes problematic
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'Era of Heterogeneous Compute using Accelerators

Trends TTg‘%&OU@-‘ Technology
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Data Acquisition in 2025

Genomics
E E -

1L -8

> Diversification of increasingly heterogenous devices and system
> Moving away from standard van Neumann architectures

> True Architectural innovation & Unconventional Computing Systems
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'Evidence: Heterogenous Data Centers

NVIDIA's Data Center Revenue from Fiscal 116 Official At Last: Intel Completes $16.7 Billion Buy of
to 1Q18 Altera
$450 o ° 9
$400 = = ’
\ ; You May Like ®utbrain |;
$350 ) This 34-year-old is a top
5 trader and says anyone can a4 k4
$300 ] getinto it
‘ by GazetteLive | Sponsored
@ §250 e / ‘
2 =N ] New Laser Eye Is Leavi
E $200 4 R o - ———= e, Oszjmaei:stsy;aiﬂe?ir:ng
Ireland

$15O _____________________ — Y \ by healthtoday.me | Sponsored
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Market Realist®
Compute intensive General Purpose. ..

Dense storage GPU

High I/0 Graphics intensive

Memory intensive

Insight 2016: AWS adding FPGA instances
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'Unconventional at System Level:
Diversification with Accelerator Support

@ OpenPOWER

> With accelerators moving closer to the CPU
(OpenCAPI, CCIX, etc...)
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' Evidence: Heterogeneous Devices

>>15

Processing I/O
System (GT, AMS)
Transceivers
Application
Processor PCle
Real-Time
Processor DDR
Programmable Logic
HBM
AMS

> From the Xilinx World: Evolution of FPGAs to ACAPSs

© Copyright 2018 Xilinx

& XILINX



With reconfigurable computing, we ca@
go even more unconventional:
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Key-Value Stores
- customized data paths
- customized memory subsystem
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Key Value Stores - Backaround

Yﬂu Upload michaela.blott@gmail. com

You have gone full screen. Exit full screen (F11)
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'Current Implementations

: . _ S T
> Multithreaded implementation (pthreads) H::}";l‘l’:okugarse

>> Each request is a connection Value store access

> All threads execute drive_machine(), processes connections from one Format & transmit
state to next, and switches over connection state

>> Shared data structures (hash tables, value store,...)

drive machine () :
while (!stop) {

. switch(c->state) {
> BOttIeneCked by case connection waiting:
>> Synchronization overhead SRS SNl S
— Threads stall on memory locks, serializing execution for x86s case new_command:
. . . . . . _ lock ket;
>> TCP/IP is CPU intensive, interrupt intensive, too large to fit into road from secket:
Instruction cache unlock socket;
. . parse;
>> Last level cache ineffective due to random-access nature of the case read htable:

application (miss rate 60% - 95% on x86) hash key;
lock hash table;
hash table access;
hash table LRU;

> Performance significantly below 10Gbps line rate unlock hash table;
case wrl e_ou put:
— Intel Xeon (8cores): 1.34MRps, 200-300usec, 7KRPS/Watt
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'Dataflow Architectures to Scale Performance

‘ FPGA ‘

Request 3 Request receive > Request 2: Hash Table Lookup 4 Request 1: Value Store Read
Request 4 Request receive _~Request 3: Hash Table Lookup & Request 2: Value Store Read 4 Request 1: prep’ed for tx
Request 4. Request receive > Request 3: Hash Table Lookup 4 Request 2: Value Store Read 2 Request 1: prep’ed for tx

Request Hash Response

10G
{ I Parser H Table Value Store H Formatter I }
DRAM Controller h

J » Avoids synchronization overhead
* No cache waste through

customized memory architecture
* TCP/IP hw accelerated

Streaming archltecture.
Flow-controlled series of processing X
stages which manipulate and pass DRAM
through packets and their associated
state

Hash | Value
Table | Store

ALGORITHMS IN LOGIC

> Order of magnitude improvement in latency and best in class for jitter

> 10Gbps demonstrated with a 64b data path @ 156MHz using 3% of FPGA resources

Source: [4] Blott et al: Achieving 10Gbps line-rate key-value stores with FPGAs; HotCloud 2013 HTTR/ALBD-LOGIC.COM
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Deep Learning

- customized precision arithmetic S/
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' Further unconventional at the Micro-Architecture, leveraging
Floating Point to Reduced Precision Neural Networks

ImageNet Classification Top-5 Error over Time (ImageNet)
60.00
> Float point improvements are slowing down
50.00 . -
» Reduced precision competitive accuracy
40.00 -
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Release Date
—-BNN —@-CNN ® Reduced Precision Internal
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'Reducing Precision

Scales Performance & Reduces Memory

> Reducing precision shrinks LUT cost
>> |nstantiate 100x more compute within the same fabric

> Potential to reduce memory footprint
>> NN model can stay on-chip => no memory bottlenecks

Precision Modelsize [MB]
(ResNet50)
1b 3.2
8b 25.5
32b 102.5

© Copyright 2018 Xilinx

LUT Costs

T T
L+ RTL Compression
— 1.1*C
XK HLS Compression

r— 1.6*C -
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C- Complexlty (Bit F"roducts)
C= size of accumulator *
size of weight *
size of activation
& XILINX.



FPGA:
LSTM - Test Error vs Power(W)
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Reducing Precision Inherently Saves Power

ASIC:
Relative Energy Cost

Operation: Energy (pJ) 1
8b Add 0.03 |
16b Add 0.05 |
32b Add 0.1

16b FP Add 0.4
32b FP Add 0.9 |
8b Mult 0.2 |
32b Mult 3.1

16b FP Mult 1.1 I
32b FP Mult 37 |
32b SRAM Read (8KB) 5 |
32b DRAM Read 640

p—

10 100 1000 lOOOOl

Target Device ZU7EV e Ambient temperature: 25 °C e 12.5% of toggle rate e 0.5 of Static
Probability @ Power reported for PL accelerated block only

Source: Bill Dally (Stanford), Cadence Embedded Neural
Network Summit, February 1, 2017

"

TecHNISCHE UNIVERSITA
KAISERSL

Rybalkin, V., Pappalardo, A., Ghaffar, M.M., Gambardella, G., Wehn, N. and Blott, M. "FINN-L: Library Extensions and Design Trade-

>>24 Analysis for Variable Precision LSTM Networks on FPGASpyright 2018 Xilinx
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Design Space Trade-Offs

30.00
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IMAGENET CLASSIFICATION TOP5% VS COMPUTE COST F(LUT,DSP)

¢ 1b weights ® 2b weights 5bit weights 8bit weights X FP weights ® minifloat ResNet-50 Syq

Resnetl8

8b/8b

Compute Cost 286
Error 10.68%

X

Resnet50 _ - .
2b/8b Pareto-optimal solut|on§‘— %{\N

Compute Cost 127 Reduced Precision can

Error 9.86%

* reduce cost / resources
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10.0 100.0 1000.0 10000.0 10000(
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* scale performance
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' Even More Unconventional:
Bit-Parallel vs Bit-Serial

> Furthermore, with bit-serial can provide run-time programmable precision with a fixed
architecture

A(n)

B(n)

Bit parallel

o(m)

Latency vs resource
trade-off

Bit serial

O(m)

——

> FPGA: Flexibility comes at almost no cost and provides equivalent bit-level performance at chip-

level for low precision*

>> 26 https://arxiv.orq/pdf/1806.08862.pdf

Umuroglu, Rasnayake, Sjalander"BISMO: A Scalable Bit-Serial Matrix Multiplication Overlay for Reconfigurable Computing." FPL’2018
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https://arxiv.org/pdf/1806.08862.pdf

Summary
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* Unconventional computing architectures emerge at data
center, system and device level

* With reconfigurable computing we can go even more

S umma ry unconventional

* Leveraging customized dataflow architectures and
memory subsystems, custom precisions

* To provide dramatic performance scaling and energy
efficiency benefits

* To enable new exciting trade-offs within the design space
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Challenges in Futures

Programming unconventional systems

Benchmarking heterogeneous systems for specific
applications

« That are fundamentally differently programmed

* That exploit different points within the design space

How can you apply some of these concepts to other
applications?



THANK YOU!

Adaptable.

More information can be found at:
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