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Plus a Very Active Internship Program

˃ On average 4-6 interns at any given time

From top universities all over the world

We are always looking for talent ;-)

˃ Overall

70+ interns since 2007

Many collaborations have come from this

Many found employment
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Industry Context

“Trends meeting Technological Reality”
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Mega-Trend: 

The Rise of the Machine (Learning Algorithm)
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˃ Potential to solve the unsolved problems

˃ Making solar energy economical, reverse engineering the brain 

(Jeff Dean, Google Brain 2017)
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Cat?

Input Image

What’s the Challenge?
Example: Convolutional Neural Networks
Forward Pass (Inference)

Neural Network Neural Network

For ResNet50:
70 Layers
7.7 Billion operations 
25.5 millions of weight 

>> 8

Basic arithmetic, incredible parallel but Huge Compute and Memory  Requirements
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Compute and Memory for Inference

Inference (1 input)
GOPS

average

Inference (1 input)
MBytes

average

Spectrum of Neural Networks

MLP ImageNet Classification CNNs
Object 

Detection
Semantic 

Segmentation
OCR

Speech 
Recognition

*architecture independent
**1 image forward 
*** batch = 1
**** int8

Huge Compute and Memory  Requirements & Variations
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Mega-Trend:

Explosion of Data

˃ Astronomically growing amounts of data

More sensors

More users

More use cases: Genomics (DNA) “Genomical”

>> 10

Stephens, Zachary D., et al. 
"Big data: astronomical or genomical?."
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Technology: 

End of Moore’s Law & Dennard Scaling

Economics become questionable Power dissipation becomes problematic
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TechnologyTrends

Era of Heterogeneous Compute using Accelerators
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˃ Diversification of increasingly heterogenous devices and system

Moving away from standard van Neumann architectures

˃ True Architectural innovation & Unconventional Computing Systems
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Evidence: Heterogenous Data Centers

Page 13
Insight 2016: AWS adding FPGA instances
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Unconventional at System Level: 
Diversification with Accelerator Support

HP Moonshot IBM’s OpenPower

˃ With accelerators moving closer to the CPU

(OpenCAPI, CCIX, etc…)
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Evidence: Heterogeneous Devices
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NOC

Programmable Logic

Processing

System

I/O 
(GT, AMS)

AI Engines

SW PE SW PE SW PE

SW PE SW PE SW PE

LUT BRAM

DSP URAM

Application

Processor

Real-Time

Processor

Transceivers

PCIe

DDR

HBM

AMS

˃ From the Xilinx World: Evolution of FPGAs to ACAPs
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With reconfigurable computing, we can 

go even more unconventional:

some examples
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Key-Value Stores

- customized data paths

- customized memory subsystem
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˃ Many popular websites share a similar basic architecture:

Key Value Stores - Background

Users

Web 

Servers

Database

Users

Web 

Servers

Users

Web 

Servers

In-memory Cache Layer

typically a pool of x86-
based servers with
plenty DRAM running
memcached

Only stores the most
recent and popular
records

In-memory cache
relieves access load on
main, disk-based SQL
database

Up to 30% of servers in data centers run memcached
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Current Implementations

˃ Multithreaded implementation (pthreads)

Each request is a connection

All threads execute drive_machine(), processes connections from one 
state to next, and switches over connection state

Shared data structures (hash tables, value store,…)

˃ Bottlenecked by:

Synchronization overhead

‒ Threads stall on memory locks, serializing execution for x86s

TCP/IP is CPU intensive, interrupt intensive, too large to fit into 
instruction cache 

Last level cache ineffective due to random-access nature of the 
application (miss rate 60% - 95% on x86)

˃ Performance significantly below 10Gbps line rate

‒ Intel Xeon (8cores): 1.34MRps, 200-300usec, 7KRPS/Watt

drive_machine():

while (!stop) {        

switch(c->state) {

case connection_waiting:

case connection_closing:

…

case new_command:

lock socket;

read from socket;

unlock socket;  

parse;

case read_htable:

hash key;

lock hash table;

hash table access;

hash table LRU;

unlock hash table; 

case write_output:

…

Receive & parse

Hash lookup

Value store access

Format & transmit



© Copyright 2018 Xilinx

10G
Request 

Parser

Response 

Formatter

Hash

Table
Value Store10G

Dataflow Architectures to Scale Performance

˃ Order of magnitude improvement in latency and best in class for jitter

˃ 10Gbps demonstrated with a 64b data path @ 156MHz using 3% of FPGA resources

DRAM Controller

DRAM

FPGA

Hash

Table

Value 

Store
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Streaming architecture:

Flow-controlled series of processing 

stages which manipulate and pass 

through packets and their associated 

state

• Avoids synchronization overhead

• No cache waste through 

customized memory architecture

• TCP/IP hw accelerated

Source: [4] Blott et al:  Achieving 10Gbps line-rate key-value stores with FPGAs; HotCloud 2013
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Request 1: Value Store Read Request 0: prep’ed for txRequest 2: Hash Table LookupRequest 3: Request receive

Request 2: Value Store Read Request 1: prep’ed for txRequest 3: Hash Table LookupRequest 4: Request receive

Request 2: Value Store Read Request 1: prep’ed for txRequest 3: Hash Table LookupRequest 4: Request receive
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Deep Learning

- customized precision arithmetic
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Further unconventional at the Micro-Architecture, leveraging

Floating Point to Reduced Precision Neural Networks 
Deliver Competitive Accuracy

Float point improvements are slowing down

Reduced precision competitive accuracy
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Reducing Precision
Scales Performance & Reduces Memory

˃ Reducing precision shrinks LUT cost

Instantiate 100x more compute within the same fabric

˃ Potential to reduce memory footprint

NN model can stay on-chip => no memory bottlenecks

Precision Modelsize [MB]
(ResNet50)

1b 3.2

8b 25.5

32b 102.5

C= size of accumulator *
size of weight * 
size of activation
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Reducing Precision Inherently Saves Power

Source: Bill Dally (Stanford), Cadence Embedded Neural 

Network Summit, February 1, 2017

Target Device ZU7EV ● Ambient temperature: 25 °C ● 12.5% of toggle rate ● 0.5 of Static 

Probability ● Power reported for PL accelerated block only

2/2
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Rybalkin, V., Pappalardo, A., Ghaffar, M.M., Gambardella, G., Wehn, N. and Blott, M. "FINN-L: Library Extensions and Design Trade-
off Analysis for Variable Precision LSTM Networks on FPGAs."
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IMAGENET CLASSIFICATION TOP5% VS COMPUTE COST F(LUT,DSP)

1b weights 2b weights 5bit weights 8bit weights FP weights minifloat ResNet-50 Syq

Design Space Trade-Offs

Resnet18
8b/8b
Compute Cost 286
Error 10.68%

Resnet50
2b/8b
Compute Cost 127
Error 9.86%

Reduced Precision can
• reduce cost / resources
• save power
• scale performance

Pareto-optimal solutions
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Even More Unconventional:
Bit-Parallel vs Bit-Serial

˃ Furthermore, with bit-serial can provide run-time programmable precision with a fixed 

architecture

˃ FPGA: Flexibility comes at almost no cost and provides equivalent bit-level performance at chip-

level for low precision*

Bit parallel

MAC

A(n)

B(n)

O(m)

Bit serial

MAC

A(n)

B(n)

O(m)

A(n)

Latency vs resource 

trade-off

>> 26
Umuroglu, Rasnayake, Sjalander"BISMO: A Scalable Bit-Serial Matrix Multiplication Overlay for Reconfigurable Computing." FPL’2018 
https://arxiv.org/pdf/1806.08862.pdf

https://arxiv.org/pdf/1806.08862.pdf
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Summary
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Summary

• Unconventional computing architectures emerge at data 
center, system and device level

• With reconfigurable computing we can go even more 
unconventional

• Leveraging customized dataflow architectures and 
memory subsystems, custom precisions

• To provide dramatic performance scaling and energy 
efficiency benefits

• To enable new exciting trade-offs within the design space
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Challenges in Futures

• Programming unconventional systems

• Benchmarking heterogeneous systems for specific 
applications

• That are fundamentally differently programmed

• That exploit different points within the design space

• How can you apply some of these concepts to other 
applications?
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Adaptable.

Intelligent.
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THANK YOU!

More information can be found at:
http://www.pynq.io/ml

http://www.pynq.io/ml

